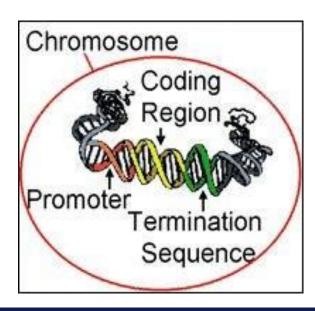
Overview of Methods for the Detection and Quantification of Living Modified Organisms

Prof. Chris Viljoen
University of the Free State
South Africa

GMO Testing Facility Tel: 051 405 3656 E-mail: viljoencd@ufs.ac.za

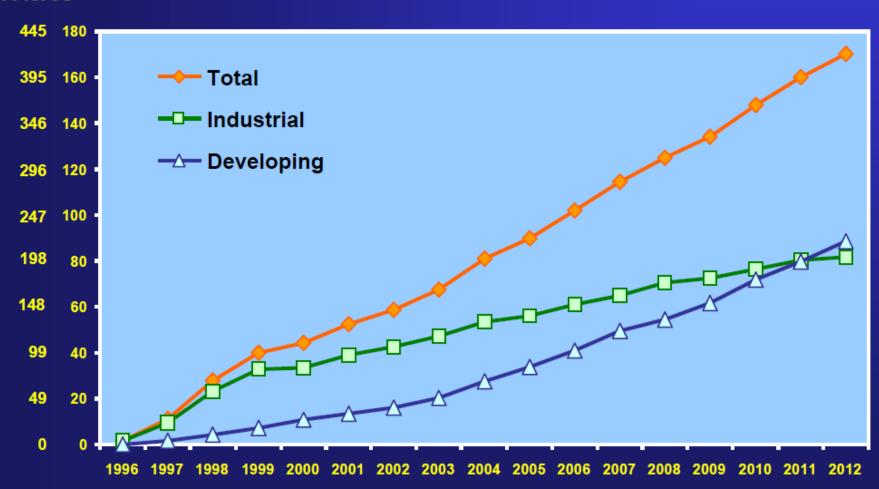


GM: Genetic Modification

GMO: Genetically Modified Organism

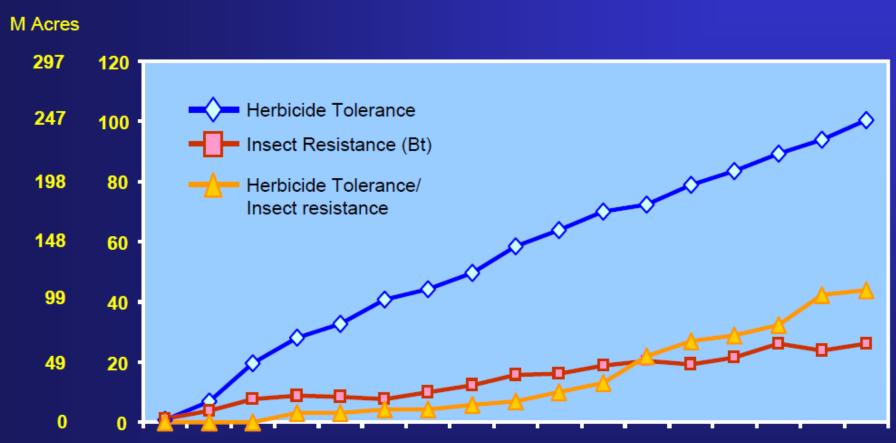
GE: Genetic Engineering

LMO: Living Modified Organism



Introduction to GM Crop Production

Global Area of Biotech Crops, 1996 to 2012: Industrial and Developing Countries (M Has, M Acres)



Source: Clive James, 2012

Global Area of Biotech Crops, 1996 to 2012: By Trait (Million Hectares, Million Acres)

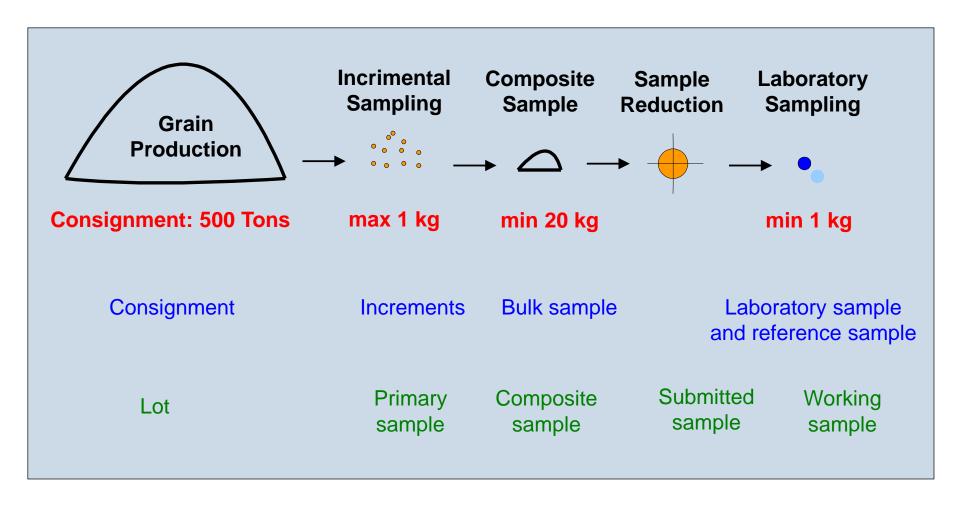


1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Source: Clive James, 2012

Global Adoption Rates (%) for Principal Biotech Crops (Million Hectares, Million Acres), 2012

Source: Clive James, 2012


Events for Major GM Crops

Crop	Trait	Genes	Commercial events	Countries with environmental release
Canola	FA and HT	als, bar, bxn, bay, epsps, pat	15	Australia, Canada, Japan, USA
Cotton	HT and IR	als, bar, bxn, epsps, cry1Ab, cry1Ac, cry2Ab, cry2AB2, cry1F, pat, vip3A	21	Argentina, Australia, Brazil, Burkino Faso, Colombia, India, Japan, Mexico, South Africa, USA
Maize	AA, IR and HT	als, amy797E, bar, cry1Ab, cry1A.105, cry2Ab, cry1Fa2, mcry3A, cry3Bb1, cry9C, cry34Ab1, cry35Ab1, epsps, pat	58	Argentina, Australia, Brazil, Canada, Colombia, EU, Japan, Korea, Philippines, South Africa, USA, Uruguay
Soybean	FA, HT and IR	bar, csr1-2, cry1Ac, epsps, fad2-1, gat4601, pat	13	Argentina, Brazil, Canada, Japan, Mexico, Paraguay, South Africa, Uruguay, USA

(http://cera-gmc.org)

Sampling for GMO Detection

GMO Sampling

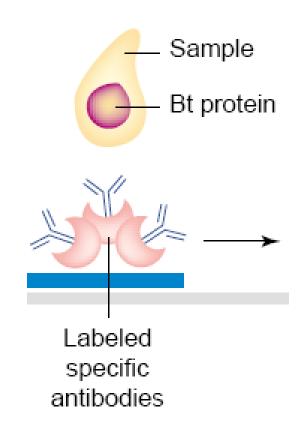
Sample Homogeneity vs Particle Size

Increasing homogeneity / representation

Particle Size

Probability Table for Sample Size

Table 1: Determining Laboratory Sample sizes using the binomial distribution


Probability level

Nr of grains	90%	95%	99%	
100	2.28%	2.95%	4.50%	
200	1.14%	1.49%	2.28%	
300	0.76%	0.99%	1.52%	
400	0.57%	0.75%	1.14%	
800	0.29%	0.37%	0.57%	
1200	0.19%	0.25%	0.38%	
2000	0.12%	0.15%	0.23%	
2500	0.09%	0.12%	0.18%	
3000	0.08%	0.10%	0.15%	
6000	0.04%	0.05%	0.08%	
10000	0.02%	0.03%	0.05%	

GMO Testing Methods

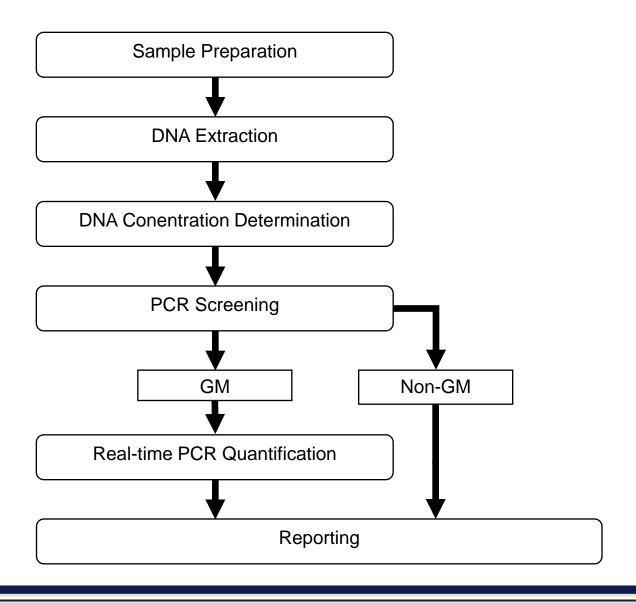
- Protein Detection (Antibody Recognition)
- DNA Detection (DNA Sequence Recognition)

Protein Antibody Recognition



Protein Testing

- Strip test
 - Qualitative
 - Can be used at point of entry
 - LOD (>0.1%)
- ELISA
 - Qualitative / Quantitative
 - Requires a plate reader
 - LOD/LOQ (≈0.1% to 0.2%)

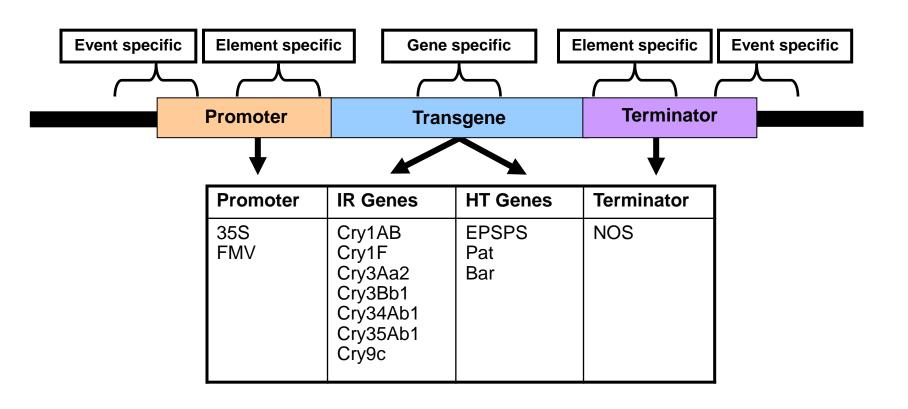


Protein Testing

- Advantages
 - Easy / Moderately Easy
 - Reasonably Low Technology Input
 - Qualitative / Quantitative
- Disadvantages
 - Specific for a Particular Transgene Protein
 - Relies on Commercial Availability of Antibodies

DNA Detection

Workflow for DNA Based Testing

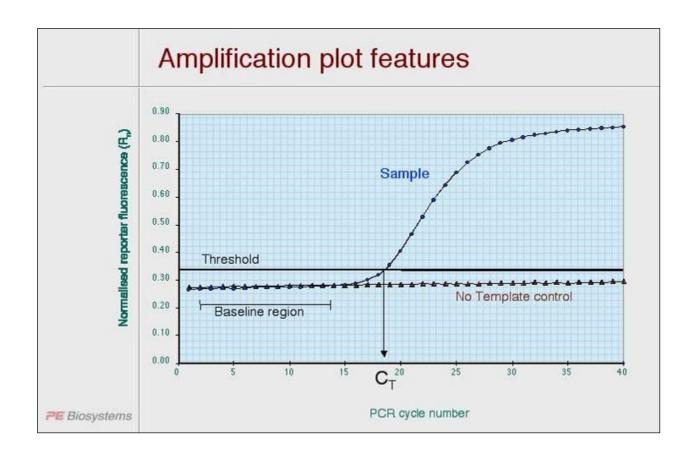

DNA Extraction

- Matrix Specific Extraction Methods
- Ensure Quality and Quantity of DNA

DNA Based Testing

- Qualitative PCR Screening
 - Element
 - Gene
 - Construct
 - Event
- Quantitative Real-time PCR
 - Element Quantification (Limited Application)
 - Event Quantification

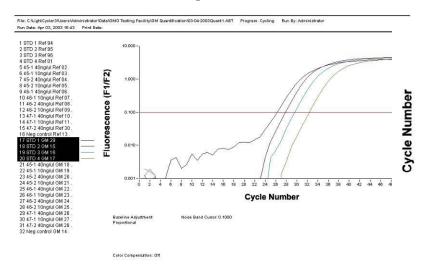
The Transgene Construct

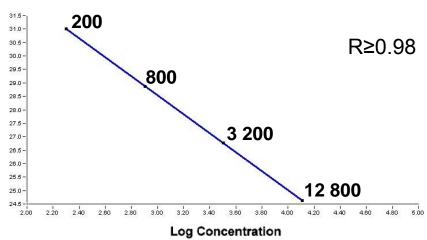

Detection Scheme

Event	Unique Identifier	Element		Gene		Frant
Event		35S	NOS	NPTII	D-SYN	Event
GA21	MON-00021-9		+			+
MON810	MON-00810-6	+				+
NK603	MON-00603-6	+	+			+
MON863	MON-00863-5	+	+	+		+
LY038	REN-00038-3				+	+
MIR604	SYN-IR604-5		+			+

Real-time PCR Detection / Quantification

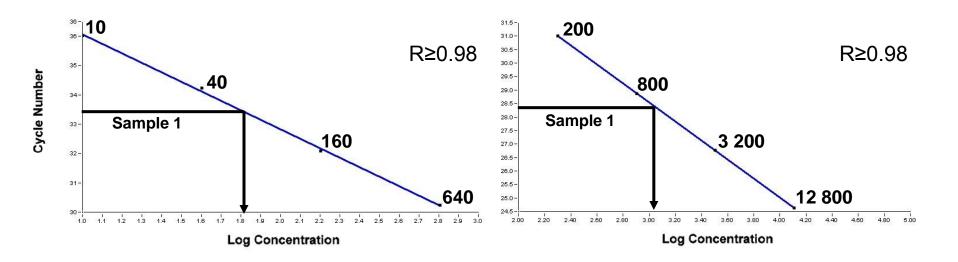
- PCR in "Real-time"
- One-step Detection and Verification
- Detection using Fluorescent Probes


PCR Amplification Curve


Ct:Threshold Cycle

PCR Amplification Curve

Reference Amplification Curve


Reference Standard Curve

Standard Curves

GM Standard Curve

Reference Standard Curve

$$%GMO = \frac{GM Copy Number}{Ref Copy Number} \times 100$$

Considerations for PCR Based GMO Testing

- Inhibition of PCR
- Prevention of Contamination
- Method Validation

Challenges for PCR Based GMO Testing

- Availability of Transgene Sequence
- Availability of Reference Material
- Difficulty in Detecting Unknown / Unexpected GMOs

TRAINING COURSE ON

THE ANALYSIS OF FOOD SAMPLES FOR THE PRESENCE OF GENETICALLY MODIFIED ORGANISMS

USER MANUAL

Edited by Maddalena Querci, Marco Jermini and Guy Van den Eede

This publication is also available online at: http://mbq.jrc.ec.europa.eu/capacitybuilding/documentation.htm

> ISBN: 92-79-02242-3 Catalogue number: LB-X1-06-051-EN-C Edition 2006

WORLD HEALTH ORGANIZATION REGIONAL OFFICE FOR EUROPE

WELTGESUNDHEITSORGANISATION REGIONALBÜRO FÜR EUROPA

ORGANISATION MONDIALE DE LA SANTE BUREAU REGIONAL DE L'EUROPE

Всемирная Организация Здравоохранения Европейское Региональное Бюро

JOINT RESEARCH CENTRE

European Union Reference Laboratory for GM Food and Feed

European Commission > JRC > IHCP > EU-RL GMFF

EU-RL GMFF Home
Legal basis
Tasks and duties
Guidance documents
Status of dossiers
Methods database
Capacity building
ENGL
Emergencies/
Unauthorised GMOs
Contacts

GMOMETHODS:

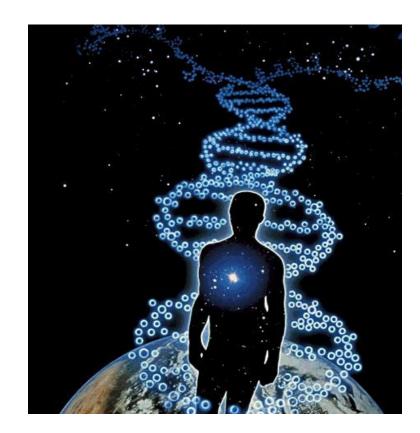
EU Database of Reference Methods for GMO Analysis
Home

Quantitative GMO detection PCR methods

- · GMO specific
 - Event specific
 - Maize
 - Soybean
 - Cotton
 - Oilseed rape
 - Potato
 - Rice
 - Sugar beet
 - Construct specific
 - Element specific
- Taxon specific
 - Validated independently
 - Validated in combination with other method(s)

Qualitative GMO detection PCR methods

- GMO specific
 - o Event-specific
 - o Construct-specific
 - Element-specific
 - Cauliflower Mosaic Virus 35S promoter (CaMV P-35S)
 - Figwort Mosaic Virus 35S promoter (P-FMV)
 - Neomycin phosphotransferase II gene (nptll)
 - Nopaline synthase terminator (T-nos)
 - Phosphinothricin N-acetyltransferase gene (bar)
- Taxon specific
 - Validated independently
 - Validated in combination with other method(s)
 - Plant-specific


http://gmo-crl.jrc.ec.europa.eu/gmomethods/

JOINT RESEARCH CENTRE

http://irmm.jrc.ec.europa.eu/activities/GMO_reference_materials

The End!

GMO Testing Facility Tel: 051 405 3656 E-mail: viljoencd@ufs.ac.za

